You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

223 lines
8.7 KiB
TypeScript

import {
router,
publicProcedure,
createCallerFactory,
} from "../../trpc/server.js";
import { generateObject, generateText, jsonSchema } from "ai";
import type {
OtherParameters,
CommittedMessage,
DraftMessage,
} from "../../types.js";
// import { client } from "../../database/milvus";
// import {
// ConsistencyLevelEnum,
// type NumberArrayId,
// } from "@zilliz/milvus2-sdk-node";
import { db, type FactTrigger, type Fact } from "../../database/lowdb.js";
import { nanoid } from "nanoid";
import { conversations } from "./conversations.js";
import { messages } from "./messages.js";
import { facts, createCaller as createCallerFacts } from "./facts.js";
import { createCaller as createCallerMessages } from "./messages.js";
import { createCaller as createCallerFactTriggers } from "./fact-triggers.js";
import { openrouter } from "./provider.js";
const factsCaller = createCallerFacts({});
const messagesCaller = createCallerMessages({});
const factTriggerCaller = createCallerFactTriggers({});
const mainSystemPrompt = ({
systemPrompt,
previousRunningSummary,
}: { systemPrompt: string; previousRunningSummary: string }) => `${systemPrompt}
This is a summary of the conversation so far, from your point-of-view (so "I" and "me" refer to you):
<running_summary>
${previousRunningSummary}
</running_summary>
`;
export const chat = router({
conversations,
messages,
facts,
sendMessage: publicProcedure
.input(
(x) =>
x as {
conversationId: string;
messages: Array<DraftMessage | CommittedMessage>;
systemPrompt: string;
parameters: OtherParameters;
},
)
.mutation(
async ({
input: { conversationId, messages, systemPrompt, parameters },
}) => {
/** TODO: Save all unsaved messages (i.e. those without an `id`) to the
* database. Is this dangerous? Can an attacker just send a bunch of
* messages, omitting the ids, causing me to save a bunch of them to the
* database? I guess it's no worse than starting new converations, which
* anyone can freely do. */
const previousRunningSummaryIndex = messages.findLastIndex(
(message) =>
typeof (message as CommittedMessage).runningSummary !== "undefined",
);
const previousRunningSummary =
previousRunningSummaryIndex >= 0
? ((messages[previousRunningSummaryIndex] as CommittedMessage)
.runningSummary as string)
: "";
const messagesSincePreviousRunningSummary = messages.slice(
previousRunningSummaryIndex + 1,
);
/** Save the incoming message to the database. */
const insertedUserMessage: CommittedMessage = {
id: nanoid(),
conversationId,
content: messages[messages.length - 1].content,
role: "user" as const,
index: messages.length - 1,
createdAt: new Date().toISOString(),
};
db.data.messages.push(insertedUserMessage);
// do not db.write() until the end
/** Generate a new message from the model, but hold-off on adding it to
* the database until we produce the associated running-summary, below.
* The model should be given the conversation summary thus far, and of
* course the user's latest message, unmodified. Invite the model to
* create any tools it needs. The tool needs to be implemented in a
* language which this system can execute; usually an interpretted
* language like Python or JavaScript. */
const mainResponse = await generateText({
model: openrouter("mistralai/mistral-nemo"),
messages: [
previousRunningSummary === ""
? { role: "system" as const, content: systemPrompt }
: {
role: "system" as const,
content: mainSystemPrompt({
systemPrompt,
previousRunningSummary,
}),
},
...messagesSincePreviousRunningSummary,
],
maxSteps: 3,
tools: undefined,
...parameters,
});
/** Extract Facts from the user's message, and add them to the database,
* linking the Facts with the messages they came from. (Yes, this should
* be done *after* the model response, not before; because when we run a
* query to find Facts to inject into the context sent to the model, we
* don't want Facts from the user's current message to be candidates for
* injection, because we're sending the user's message unadulterated to
* the model; there's no reason to inject the same Facts that the model is
* already using to generate its response.) */
const factsFromUserMessageResponse =
await factsCaller.extractFromNewMessages({
previousRunningSummary,
messagesSincePreviousRunningSummary: [],
newMessages: messagesSincePreviousRunningSummary,
});
const insertedFactsFromUserMessage: Array<Fact> =
factsFromUserMessageResponse.object.facts.map((fact) => ({
id: nanoid(),
userId: "1",
sourceMessageId: insertedUserMessage.id,
content: fact,
createdAt: new Date().toISOString(),
}));
db.data.facts.push(...insertedFactsFromUserMessage);
/** Produce a running summary of the conversation, and save that along
* with the model's response to the database. The new running summary is
* based on the previous running summary combined with the all messages
* since that summary was produced. */
const runningSummaryResponse = await messagesCaller.generateRunningSummary({
messagesSincePreviousRunningSummary,
mainResponseContent: mainResponse.text,
previousRunningSummary,
});
const insertedAssistantMessage: CommittedMessage = {
id: nanoid(),
conversationId,
content: mainResponse.text,
runningSummary: runningSummaryResponse.text,
role: "assistant" as const,
index: messages.length,
createdAt: new Date().toISOString(),
};
db.data.messages.push(insertedAssistantMessage);
/** Extract Facts from the model's response, and add them to the database,
* linking the Facts with the messages they came from. */
const factsFromAssistantMessageResponse =
await factsCaller.extractFromNewMessages({
previousRunningSummary,
messagesSincePreviousRunningSummary,
newMessages: [
{
role: "assistant" as const,
content: mainResponse.text,
},
],
});
const insertedFactsFromAssistantMessage: Array<Fact> =
factsFromAssistantMessageResponse.object.facts.map((factContent) => ({
id: nanoid(),
userId: "1",
sourceMessageId: insertedAssistantMessage.id,
content: factContent,
createdAt: new Date().toISOString(),
}));
db.data.facts.push(...insertedFactsFromAssistantMessage);
const insertedFacts = [
...insertedFactsFromUserMessage,
...insertedFactsFromAssistantMessage,
];
/** For each Fact produced in the two fact-extraction steps, generate
* FactTriggers and add them to the database, linking the FactTriggers
* with the Facts they came from. A FactTrigger is a natural language
* phrase that describes a situation in which it would be useful to invoke
* the Fact. (e.g., "When food preferences are discussed"). */
for (const fact of insertedFacts) {
const factTriggers = await factTriggerCaller.generateFromFact({
mainResponseContent: mainResponse.text,
previousRunningSummary,
messagesSincePreviousRunningSummary,
fact
});
const insertedFactTriggers: Array<FactTrigger> =
factTriggers.object.factTriggers.map((factTrigger) => ({
id: nanoid(),
sourceFactId: fact.id,
content: factTrigger,
priorityMultiplier: 1,
priorityMultiplierReason: "",
scopeConversationId: conversationId,
createdAt: new Date().toISOString(),
}));
db.data.factTriggers.push(...insertedFactTriggers);
}
await db.write();
return {
insertedAssistantMessage,
insertedUserMessage,
insertedFacts,
};
},
),
});
export const createCaller = createCallerFactory(chat);