You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
287 lines
10 KiB
TypeScript
287 lines
10 KiB
TypeScript
import {
|
|
router,
|
|
publicProcedure,
|
|
createCallerFactory,
|
|
} from "../../trpc/server.js";
|
|
import { generateObject, generateText, jsonSchema, streamText } from "ai";
|
|
import type {
|
|
OtherParameters,
|
|
CommittedMessage,
|
|
DraftMessage,
|
|
} from "../../types.js";
|
|
// import { client } from "../../database/milvus";
|
|
// import {
|
|
// ConsistencyLevelEnum,
|
|
// type NumberArrayId,
|
|
// } from "@zilliz/milvus2-sdk-node";
|
|
import { db } from "../../database/index.js";
|
|
import { conversations } from "./conversations.js";
|
|
import { messages } from "./messages.js";
|
|
import { facts, createCaller as createCallerFacts } from "./facts.js";
|
|
import { createCaller as createCallerMessages } from "./messages.js";
|
|
import { createCaller as createCallerFactTriggers } from "./fact-triggers.js";
|
|
import { factTriggers } from "./fact-triggers.js";
|
|
import { MODEL_NAME, openrouter } from "./provider.js";
|
|
import type { Fact, FactTrigger } from "../../database/common.js";
|
|
|
|
const factsCaller = createCallerFacts({});
|
|
const messagesCaller = createCallerMessages({});
|
|
const factTriggerCaller = createCallerFactTriggers({});
|
|
|
|
const mainSystemPrompt = ({
|
|
systemPrompt,
|
|
previousRunningSummary,
|
|
}: {
|
|
systemPrompt: string;
|
|
previousRunningSummary: string;
|
|
}) => `${systemPrompt}
|
|
|
|
This is a summary of the conversation so far, from your point-of-view (so "I" and "me" refer to you):
|
|
<running_summary>
|
|
${previousRunningSummary}
|
|
</running_summary>
|
|
`;
|
|
|
|
export const chat = router({
|
|
conversations,
|
|
messages,
|
|
facts,
|
|
factTriggers,
|
|
streamMessage: publicProcedure
|
|
.input(
|
|
(x) =>
|
|
x as {
|
|
message: string;
|
|
}
|
|
)
|
|
.subscription(async function* ({ input, signal }) {
|
|
const result = streamText({
|
|
model: openrouter(MODEL_NAME),
|
|
messages: [{ role: "user" as const, content: input.message }],
|
|
abortSignal: signal,
|
|
});
|
|
for await (const chunk of result.textStream) {
|
|
yield chunk;
|
|
}
|
|
}),
|
|
sendMessage: publicProcedure
|
|
.input(
|
|
(x) =>
|
|
x as {
|
|
conversationId: string;
|
|
messages: Array<DraftMessage | CommittedMessage>;
|
|
systemPrompt: string;
|
|
parameters: OtherParameters;
|
|
}
|
|
)
|
|
.subscription(async function* ({
|
|
input: { conversationId, messages, systemPrompt, parameters },
|
|
}) {
|
|
/** TODO: Save all unsaved messages (i.e. those without an `id`) to the
|
|
* database. Is this dangerous? Can an attacker just send a bunch of
|
|
* messages, omitting the ids, causing me to save a bunch of them to the
|
|
* database? I guess it's no worse than starting new converations, which
|
|
* anyone can freely do. */
|
|
const previousRunningSummaryIndex = messages.findLastIndex(
|
|
(message) =>
|
|
typeof (message as CommittedMessage).runningSummary !== "undefined"
|
|
);
|
|
const previousRunningSummary =
|
|
previousRunningSummaryIndex >= 0
|
|
? ((messages[previousRunningSummaryIndex] as CommittedMessage)
|
|
.runningSummary as string)
|
|
: "";
|
|
const messagesSincePreviousRunningSummary = messages.slice(
|
|
previousRunningSummaryIndex + 1
|
|
);
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "saving_user_message",
|
|
message: "Saving user message...",
|
|
} as const;
|
|
|
|
/** Save the incoming message to the database. */
|
|
const insertedUserMessage = await db.messages.create({
|
|
conversationId,
|
|
// content: messages[messages.length - 1].content,
|
|
// role: "user" as const,
|
|
...messages[messages.length - 1],
|
|
index: messages.length - 1,
|
|
createdAt: new Date().toISOString(),
|
|
});
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "generating_response",
|
|
message: "Generating AI response...",
|
|
} as const;
|
|
|
|
/** Generate a new message from the model, but hold-off on adding it to
|
|
* the database until we produce the associated running-summary, below.
|
|
* The model should be given the conversation summary thus far, and of
|
|
* course the user's latest message, unmodified. Invite the model to
|
|
* create any tools it needs. The tool needs to be implemented in a
|
|
* language which this system can execute; usually an interpretted
|
|
* language like Python or JavaScript. */
|
|
const mainResponse = await generateText({
|
|
model: openrouter(MODEL_NAME),
|
|
messages: [
|
|
previousRunningSummary === ""
|
|
? {
|
|
role: "system" as const,
|
|
content: systemPrompt,
|
|
}
|
|
: {
|
|
role: "system" as const,
|
|
content: mainSystemPrompt({
|
|
systemPrompt,
|
|
previousRunningSummary,
|
|
}),
|
|
},
|
|
...messagesSincePreviousRunningSummary.map((m) => ({
|
|
role: m.role,
|
|
content: m.parts
|
|
.filter((p) => p.type === "text")
|
|
.map((p) => p.text)
|
|
.join(""),
|
|
})),
|
|
],
|
|
tools: undefined,
|
|
...parameters,
|
|
});
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "extracting_facts_from_user",
|
|
message: "Extracting facts from user message...",
|
|
} as const;
|
|
|
|
/** Extract Facts from the user's message, and add them to the database,
|
|
* linking the Facts with the messages they came from. (Yes, this should
|
|
* be done *after* the model response, not before; because when we run a
|
|
* query to find Facts to inject into the context sent to the model, we
|
|
* don't want Facts from the user's current message to be candidates for
|
|
* injection, because we're sending the user's message unadulterated to
|
|
* the model; there's no reason to inject the same Facts that the model is
|
|
* already using to generate its response.) */
|
|
const factsFromUserMessageResponse =
|
|
await factsCaller.extractFromNewMessages({
|
|
previousRunningSummary,
|
|
messagesSincePreviousRunningSummary: [],
|
|
newMessages: messagesSincePreviousRunningSummary,
|
|
});
|
|
const insertedFactsFromUserMessage = await db.facts.createMany(
|
|
factsFromUserMessageResponse.object.facts.map((fact) => ({
|
|
userId: "019900bb-61b3-7333-b760-b27784dfe33b",
|
|
sourceMessageId: insertedUserMessage.id,
|
|
content: fact,
|
|
}))
|
|
);
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "generating_summary",
|
|
message: "Generating conversation summary...",
|
|
} as const;
|
|
|
|
/** Produce a running summary of the conversation, and save that along
|
|
* with the model's response to the database. The new running summary is
|
|
* based on the previous running summary combined with the all messages
|
|
* since that summary was produced. */
|
|
const runningSummaryResponse =
|
|
await messagesCaller.generateRunningSummary({
|
|
messagesSincePreviousRunningSummary,
|
|
mainResponseContent: mainResponse.text,
|
|
previousRunningSummary,
|
|
});
|
|
const insertedAssistantMessage = await db.messages.create({
|
|
conversationId,
|
|
// content: mainResponse.text,
|
|
parts: [{ type: "text", text: mainResponse.text }],
|
|
runningSummary: runningSummaryResponse.text,
|
|
role: "assistant" as const,
|
|
index: messages.length,
|
|
createdAt: new Date().toISOString(),
|
|
});
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "extracting_facts_from_assistant",
|
|
message: "Extracting facts from assistant response...",
|
|
} as const;
|
|
|
|
/** Extract Facts from the model's response, and add them to the database,
|
|
* linking the Facts with the messages they came from. */
|
|
const factsFromAssistantMessageResponse =
|
|
await factsCaller.extractFromNewMessages({
|
|
previousRunningSummary,
|
|
messagesSincePreviousRunningSummary,
|
|
newMessages: [
|
|
{
|
|
role: "assistant" as const,
|
|
// content: mainResponse.text,
|
|
parts: [{ type: "text", text: mainResponse.text }],
|
|
},
|
|
],
|
|
});
|
|
|
|
const insertedFactsFromAssistantMessage = await db.facts.createMany(
|
|
factsFromAssistantMessageResponse.object.facts.map((factContent) => ({
|
|
userId: "019900bb-61b3-7333-b760-b27784dfe33b",
|
|
sourceMessageId: insertedAssistantMessage.id,
|
|
content: factContent,
|
|
createdAt: new Date().toISOString(),
|
|
}))
|
|
);
|
|
|
|
const insertedFacts = [
|
|
...insertedFactsFromUserMessage,
|
|
...insertedFactsFromAssistantMessage,
|
|
];
|
|
|
|
// Emit status update
|
|
yield {
|
|
status: "generating_fact_triggers",
|
|
message: "Generating fact triggers...",
|
|
} as const;
|
|
|
|
/** For each Fact produced in the two fact-extraction steps, generate
|
|
* FactTriggers and add them to the database, linking the FactTriggers
|
|
* with the Facts they came from. A FactTrigger is a natural language
|
|
* phrase that describes a situation in which it would be useful to invoke
|
|
* the Fact. (e.g., "When food preferences are discussed"). */
|
|
for (const fact of insertedFacts) {
|
|
const factTriggers = await factTriggerCaller.generateFromFact({
|
|
mainResponseContent: mainResponse.text,
|
|
previousRunningSummary,
|
|
messagesSincePreviousRunningSummary,
|
|
fact,
|
|
});
|
|
const insertedFactTriggers: Array<Omit<FactTrigger, "id">> =
|
|
factTriggers.object.factTriggers.map((factTrigger) => ({
|
|
sourceFactId: fact.id,
|
|
content: factTrigger,
|
|
priorityMultiplier: 1,
|
|
priorityMultiplierReason: "",
|
|
scopeConversationId: conversationId,
|
|
createdAt: new Date().toISOString(),
|
|
}));
|
|
await db.factTriggers.createMany(insertedFactTriggers);
|
|
}
|
|
|
|
// Emit final result
|
|
yield {
|
|
status: "completed",
|
|
message: "Completed!",
|
|
result: {
|
|
insertedAssistantMessage,
|
|
insertedUserMessage,
|
|
insertedFacts,
|
|
},
|
|
} as const;
|
|
}),
|
|
});
|
|
|
|
export const createCaller = createCallerFactory(chat);
|